Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viral Immunol ; 36(4): 241-249, 2023 05.
Article in English | MEDLINE | ID: covidwho-2259868

ABSTRACT

Individuals with no known comorbidities or risk factors may develop severe coronavirus disease 2019 (COVID-19). The present study assessed the effect of certain host polymorphisms and viral lineage on the severity of COVID-19 among hospitalized patients with no known comorbidities in Mexico. The analysis included 117 unrelated hospitalized patients with COVID-19. Patients were stratified by whether they required intensive care unit (ICU) admission: the ICU group (n = 40) and non-ICU group (n = 77). COVID-19 was diagnosed on the basis of a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription-polymerase chain reaction (RT-PCR) assay and clinical and radiographic criteria. The presence of the IL1B-31 (T/C) polymorphism was determined for all patients using PCR and nucleotide sequencing. Genotyping of the IL-4 (-590, T/C) and IL-8 (-251, T/A) polymorphisms was performed by the amplification refractory mutation system-PCR method. Genotyping of IL1-RN was performed using PCR. Viral genome sequencing was performed using the ARTIC Network amplicon sequencing protocol using a MinION. Logistic regression analysis identified the carriage of IL-1 B*-31 *C as an independent potential risk factor (odds ratio [OR] = 3.1736, 95% confidence interval [CI] = 1.0748-9.3705, p = 0.0366) for ICU admission and the presence of IL-RN*2 as a protective factor (OR = 0.4371, 95% CI = 0.1935-0.9871, p = 0.0465) against ICU admission. Under the codominant model, the CC genotype of IL1B-31 significantly increased the risk of ICU admission (OR: 6.38, 95% CI: 11.57-25.86, p < 0.024). The IL1B-31 *C-IL-4-590 *T haplotype increased the risk of ICU admission (OR = 2.53, 95% CI = 1.02-6.25, p = 0.047). The 42 SARS-CoV-2 genomes sequenced belonged to four clades, 20A-20D. No association was detected between SARS-CoV-2 clades and ICU admission or death. Thus, in patients with no known comorbidities or risk factors, the IL1B-31*C proinflammatory allele was observed to be associated with the risk of ICU admission owing to COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Alleles , Interleukin-4 , Hospitalization
3.
Vaccines (Basel) ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1847412

ABSTRACT

Information regarding the efficacy of the recombinant adenovirus type-5-vectored (CanSino Bio) vaccine against the COVID-19 disease in a real-life setting is limited. A retrospective cohort study was carried out in the teaching university community of the metropolitan area of Monterrey, Mexico, through a four-section survey, and during the COVID-19 delta wave. Determination of IgG antibodies against SARS-CoV-2 spike (S) protein was performed in a subset of participants vaccinated with CanSino Bio. A total of 7468 teachers responded to the survey, and 6695 of them were fully vaccinated. Of those, 72.7% had CanSino Bio, 10.3% Pfizer, 8.4% AstraZeneca, 1.2% Moderna, and 2.7% others. Symptomatic breakthrough infections were recorded in those vaccinated with CanSino Bio (4.1%), AstraZeneca (2.1%), and Pfizer (2.2%). No difference was found between CanSino Bio and other vaccines regarding hospitalization, the need for mechanical ventilation, and death. For CanSino Bio recipients, anti-S antibodies were >50 AU/mL in 73.2%. In conclusion, primary breakthrough symptomatic infections were higher in the CanSino vaccinated group compared to other brands. Individuals with a previous infection had higher antibody levels than those who were reinfected and without infection. A boosted dose of CanSino is recommended for those individuals without a previous infection.

4.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: covidwho-1625198

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) or of interest (VOIs) causing vaccine breakthrough infections pose an increased risk to worldwide public health. An observational case-control study was performed of SARS-CoV-2 vaccine breakthrough infections in hospitalized or ambulatory patients in Monterrey, Mexico, from April through August 2021. Vaccination breakthrough was defined as a SARS-CoV-2 infection that occurred any time after 7 days of inoculation with partial (e.g., first dose of two-dose vaccines) or complete immunization (e.g., second dose of two-dose vaccines or single-dose vaccine, accordingly). Case group patients (n = 53) had partial or complete vaccination schemes with CanSino (45%), Sinovac (19%), Pfizer/BioNTech (15%), and AstraZeneca/Oxford (15%). CanSino was administered most frequently in ambulatory patients (p < 0.01). The control group (n = 19) received no COVID-19 vaccines. Among SARS-CoV-2 variants detected by whole-genome sequencing, VOC Delta B.1.617.2 predominated in vaccinated ambulatory patients (p < 0.01) and AY.4 in hospitalized patients (p = 0.04); VOI Mu B.1.621 was detected in four (7.55%) vaccinated patients. SARS-CoV-2 breakthrough infections in our hospital occurred mostly in patients vaccinated with CanSino due to the higher prevalence of CanSino vaccine administration in our population. These patients developed mild COVID-19 symptoms not requiring hospitalization. The significance of this study lies on the detection of SARS-CoV-2 variants compromising the efficacy of local immunization therapies in Monterrey, Mexico.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/epidemiology , COVID-19 Vaccines , Case-Control Studies , Female , Hospitalization , Hospitals, University , Humans , Male , Mexico/epidemiology , Middle Aged , Phylogeny , Prevalence , SARS-CoV-2/classification , SARS-CoV-2/genetics , Vaccination , Vaccine Efficacy , Whole Genome Sequencing
6.
J Microbiol Immunol Infect ; 54(5): 787-793, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1293986

ABSTRACT

OBJECTIVE: We aimed to analyze clinical outcomes from patients with severe COVID-19 pneumonia that received either baricitinib plus dexamethasone or dexamethasone monotherapy. METHODOLOGY: We performed a retrospective comparative study. Data from hospitalized patients with severe COVID-19 pneumonia (saturation <93%, bilateral pulmonary infiltrates) that were treated with baricitinib plus dexamethasone or dexamethasone were collected. Our primary objective was to compare overall mortality and secondly to compare progression to mechanical ventilation and over infection rates. RESULTS: A total of 793 patients were assessed for inclusion criteria, 596 were excluded and 197 were analyzed for primary outcome: 123 in the baricitinib plus dexamethasone group and 74 in the dexamethasone monotherapy group. The mean age was 59.9 years (SD ± 14.5) and 62.1% (123/197) were male. 42.9% (85/197) of the cases required ICU admission and 25.8% (51/197) underwent invasive mechanical ventilation (IMV). Overall thirty-day mortality was 27.9% (55/197); Mortality was significantly lower in the baricitinib plus dexamethasone group compared to the dexamethasone monotherapy group (20.3% vs 40.5%, P = <.05). There was no difference in hospital acquired infections between both groups. CONCLUSION: Thirty-day mortality was significantly lower in patients with COVID-19 pneumonia treated with baricitinib plus dexamethasone versus dexamethasone monotherapy. No difference was observed in progression to invasive mechanical ventilation and hospital acquired infections.


Subject(s)
Azetidines/therapeutic use , COVID-19 Drug Treatment , Dexamethasone/therapeutic use , Purines/therapeutic use , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Aged , Drug Therapy, Combination , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL